skip to content

CAMBEEP

Cambridge Building Energy & Environment Portal
 

Artificial Intelligence beats doctors in accurately assessing eye problems

Cambridge Uni news - Wed, 17/04/2024 - 19:00

The clinical knowledge and reasoning skills of GPT-4 are approaching the level of specialist eye doctors, a study led by the University of Cambridge has found.

GPT-4 - a ‘large language model’ - was tested against doctors at different stages in their careers, including unspecialised junior doctors, and trainee and expert eye doctors. Each was presented with a series of 87 patient scenarios involving a specific eye problem, and asked to give a diagnosis or advise on treatment by selecting from four options.

GPT-4 scored significantly better in the test than unspecialised junior doctors, who are comparable to general practitioners in their level of specialist eye knowledge.

GPT-4 gained similar scores to trainee and expert eye doctors - although the top performing doctors scored higher.

The researchers say that large language models aren’t likely to replace healthcare professionals, but have the potential to improve healthcare as part of the clinical workflow.

They say state-of-the-art large language models like GPT-4 could be useful for providing eye-related advice, diagnosis, and management suggestions in well-controlled contexts, like triaging patients, or where access to specialist healthcare professionals is limited.

“We could realistically deploy AI in triaging patients with eye issues to decide which cases are emergencies that need to be seen by a specialist immediately, which can be seen by a GP, and which don’t need treatment,” said Dr Arun Thirunavukarasu, lead author of the study, which he carried out while a student at the University of Cambridge’s School of Clinical Medicine.

He added: “The models could follow clear algorithms already in use, and we’ve found that GPT-4 is as good as expert clinicians at processing eye symptoms and signs to answer more complicated questions.

“With further development, large language models could also advise GPs who are struggling to get prompt advice from eye doctors. People in the UK are waiting longer than ever for eye care.

Large volumes of clinical text are needed to help fine-tune and develop these models, and work is ongoing around the world to facilitate this.

The researchers say that their study is superior to similar, previous studies because they compared the abilities of AI to practicing doctors, rather than to sets of examination results.

“Doctors aren't revising for exams for their whole career. We wanted to see how AI fared when pitted against to the on-the-spot knowledge and abilities of practicing doctors, to provide a fair comparison,” said Thirunavukarasu, who is now an Academic Foundation Doctor at Oxford University Hospitals NHS Foundation Trust.

He added: “We also need to characterise the capabilities and limitations of commercially available models, as patients may already be using them - rather than the internet - for advice.”

The test included questions about a huge range of eye problems, including extreme light sensitivity, decreased vision, lesions, itchy and painful eyes, taken from a textbook used to test trainee eye doctors. This textbook is not freely available on the internet, making it unlikely that its content was included in GPT-4’s training datasets.

The results are published today in the journal PLOS Digital Health.

“Even taking the future use of AI into account, I think doctors will continue to be in charge of patient care. The most important thing is to empower patients to decide whether they want computer systems to be involved or not. That will be an individual decision for each patient to make,” said Thirunavukarasu.

GPT-4 and GPT-3.5 – or ‘Generative Pre-trained Transformers’ - are trained on datasets containing hundreds of billions of words from articles, books, and other internet sources. These are two examples of large language models; others in wide use include Pathways Language Model 2 (PaLM 2) and Large Language Model Meta AI 2 (LLaMA 2).

The study also tested GPT-3.5, PaLM2, and LLaMA with the same set of questions. GPT-4 gave more accurate responses than all of them.

GPT-4 powers the online chatbot ChatGPT to provide bespoke responses to human queries. In recent months, ChatGPT has attracted significant attention in medicine for attaining passing level performance in medical school examinations, and providing more accurate and empathetic messages than human doctors in response to patient queries.

The field of artificially intelligent large language models is moving very rapidly. Since the study was conducted, more advanced models have been released - which may be even closer to the level of expert eye doctors.

Reference: Thirunavukarasu, A.J. et al: ‘Large language models approach expert-level clinical knowledge and reasoning in ophthalmology: A head-to-head cross-sectional study.’ PLOS Digital Health, April 2024. DOI: 10.1371/journal.pdig.0000341

A study has found that the AI model GPT-4 significantly exceeds the ability of non-specialist doctors to assess eye problems and provide advice.

We could realistically deploy AI in triaging patients with eye issues to decide which cases are emergencies.Arun ThirunavukarasuMavocado on Getty


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Attribution-Noncommerical

AI speeds up drug design for Parkinson’s ten-fold

http://www.cam.ac.uk/news/feed - Wed, 17/04/2024 - 10:00

The researchers, from the University of Cambridge, designed and used an AI-based strategy to identify compounds that block the clumping, or aggregation, of alpha-synuclein, the protein that characterises Parkinson’s.

The team used machine learning techniques to quickly screen a chemical library containing millions of entries, and identified five highly potent compounds for further investigation.

Parkinson’s affects more than six million people worldwide, with that number projected to triple by 2040. No disease-modifying treatments for the condition are currently available. The process of screening large chemical libraries for drug candidates – which needs to happen well before potential treatments can be tested on patients – is enormously time-consuming and expensive, and often unsuccessful.

Using machine learning, the researchers were able to speed up the initial screening process ten-fold, and reduce the cost by a thousand-fold, which could mean that potential treatments for Parkinson’s reach patients much faster. The results are reported in the journal Nature Chemical Biology.

Parkinson’s is the fastest-growing neurological condition worldwide. In the UK, one in 37 people alive today will be diagnosed with Parkinson’s in their lifetime. In addition to motor symptoms, Parkinson’s can also affect the gastrointestinal system, nervous system, sleeping patterns, mood and cognition, and can contribute to a reduced quality of life and significant disability.

Proteins are responsible for important cell processes, but when people have Parkinson’s, these proteins go rogue and cause the death of nerve cells. When proteins misfold, they can form abnormal clusters called Lewy bodies, which build up within brain cells stopping them from functioning properly.

“One route to search for potential treatments for Parkinson’s requires the identification of small molecules that can inhibit the aggregation of alpha-synuclein, which is a protein closely associated with the disease,” said Professor Michele Vendruscolo from the Yusuf Hamied Department of Chemistry, who led the research. “But this is an extremely time-consuming process – just identifying a lead candidate for further testing can take months or even years.”

While there are currently clinical trials for Parkinson’s currently underway, no disease-modifying drug has been approved, reflecting the inability to directly target the molecular species that cause the disease.

This has been a major obstacle in Parkinson’s research, because of the lack of methods to identify the correct molecular targets and engage with them. This technological gap has severely hampered the development of effective treatments.

The Cambridge team developed a machine learning method in which chemical libraries containing millions of compounds are screened to identify small molecules that bind to the amyloid aggregates and block their proliferation.

A small number of top-ranking compounds were then tested experimentally to select the most potent inhibitors of aggregation. The information gained from these experimental assays was fed back into the machine learning model in an iterative manner, so that after a few iterations, highly potent compounds were identified.

“Instead of screening experimentally, we screen computationally,” said Vendruscolo, who is co-Director of the Centre for Misfolding Diseases. “By using the knowledge we gained from the initial screening with our machine learning model, we were able to train the model to identify the specific regions on these small molecules responsible for binding, then we can re-screen and find more potent molecules.”

Using this method, the Cambridge team developed compounds to target pockets on the surfaces of the aggregates, which are responsible for the exponential proliferation of the aggregates themselves. These compounds are hundreds of times more potent, and far cheaper to develop, than previously reported ones.

“Machine learning is having a real impact on drug discovery – it’s speeding up the whole process of identifying the most promising candidates,” said Vendruscolo. “For us, this means we can start work on multiple drug discovery programmes – instead of just one. So much is possible due to the massive reduction in both time and cost – it’s an exciting time.”

The research was conducted in the Chemistry of Health Laboratory in Cambridge, which was established with the support of the UK Research Partnership Investment Fund (UKRPIF) to promote the translation of academic research into clinical programmes.

 

Reference:
Robert I. Horne et al. ‘Discovery of Potent Inhibitors of α-Synuclein Aggregation Using Structure-Based Iterative Learning.’ Nature Chemical Biology (2024). DOI: 10.1038/s41589-024-01580-x

Researchers have used artificial intelligence techniques to massively accelerate the search for Parkinson’s disease treatments.

Machine learning is having a real impact on drug discovery – it’s speeding up the whole process of identifying the most promising candidatesMichele Vendruscolo Nathan PittMichele Vendruscolo


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

AI speeds up drug design for Parkinson’s ten-fold

Cambridge Uni news - Wed, 17/04/2024 - 10:00

The researchers, from the University of Cambridge, designed and used an AI-based strategy to identify compounds that block the clumping, or aggregation, of alpha-synuclein, the protein that characterises Parkinson’s.

The team used machine learning techniques to quickly screen a chemical library containing millions of entries, and identified five highly potent compounds for further investigation.

Parkinson’s affects more than six million people worldwide, with that number projected to triple by 2040. No disease-modifying treatments for the condition are currently available. The process of screening large chemical libraries for drug candidates – which needs to happen well before potential treatments can be tested on patients – is enormously time-consuming and expensive, and often unsuccessful.

Using machine learning, the researchers were able to speed up the initial screening process ten-fold, and reduce the cost by a thousand-fold, which could mean that potential treatments for Parkinson’s reach patients much faster. The results are reported in the journal Nature Chemical Biology.

Parkinson’s is the fastest-growing neurological condition worldwide. In the UK, one in 37 people alive today will be diagnosed with Parkinson’s in their lifetime. In addition to motor symptoms, Parkinson’s can also affect the gastrointestinal system, nervous system, sleeping patterns, mood and cognition, and can contribute to a reduced quality of life and significant disability.

Proteins are responsible for important cell processes, but when people have Parkinson’s, these proteins go rogue and cause the death of nerve cells. When proteins misfold, they can form abnormal clusters called Lewy bodies, which build up within brain cells stopping them from functioning properly.

“One route to search for potential treatments for Parkinson’s requires the identification of small molecules that can inhibit the aggregation of alpha-synuclein, which is a protein closely associated with the disease,” said Professor Michele Vendruscolo from the Yusuf Hamied Department of Chemistry, who led the research. “But this is an extremely time-consuming process – just identifying a lead candidate for further testing can take months or even years.”

While there are currently clinical trials for Parkinson’s currently underway, no disease-modifying drug has been approved, reflecting the inability to directly target the molecular species that cause the disease.

This has been a major obstacle in Parkinson’s research, because of the lack of methods to identify the correct molecular targets and engage with them. This technological gap has severely hampered the development of effective treatments.

The Cambridge team developed a machine learning method in which chemical libraries containing millions of compounds are screened to identify small molecules that bind to the amyloid aggregates and block their proliferation.

A small number of top-ranking compounds were then tested experimentally to select the most potent inhibitors of aggregation. The information gained from these experimental assays was fed back into the machine learning model in an iterative manner, so that after a few iterations, highly potent compounds were identified.

“Instead of screening experimentally, we screen computationally,” said Vendruscolo, who is co-Director of the Centre for Misfolding Diseases. “By using the knowledge we gained from the initial screening with our machine learning model, we were able to train the model to identify the specific regions on these small molecules responsible for binding, then we can re-screen and find more potent molecules.”

Using this method, the Cambridge team developed compounds to target pockets on the surfaces of the aggregates, which are responsible for the exponential proliferation of the aggregates themselves. These compounds are hundreds of times more potent, and far cheaper to develop, than previously reported ones.

“Machine learning is having a real impact on drug discovery – it’s speeding up the whole process of identifying the most promising candidates,” said Vendruscolo. “For us, this means we can start work on multiple drug discovery programmes – instead of just one. So much is possible due to the massive reduction in both time and cost – it’s an exciting time.”

The research was conducted in the Chemistry of Health Laboratory in Cambridge, which was established with the support of the UK Research Partnership Investment Fund (UKRPIF) to promote the translation of academic research into clinical programmes.

 

Reference:
Robert I. Horne et al. ‘Discovery of Potent Inhibitors of α-Synuclein Aggregation Using Structure-Based Iterative Learning.’ Nature Chemical Biology (2024). DOI: 10.1038/s41589-024-01580-x

Researchers have used artificial intelligence techniques to massively accelerate the search for Parkinson’s disease treatments.

Machine learning is having a real impact on drug discovery – it’s speeding up the whole process of identifying the most promising candidatesMichele Vendruscolo Nathan PittMichele Vendruscolo


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Interspecies competition led to even more forms of ancient human – defying evolutionary trends in vertebrates

http://www.cam.ac.uk/news/feed - Wed, 17/04/2024 - 09:06

Climate has long been held responsible for the emergence and extinction of hominin species. In most vertebrates, however, interspecies competition is known to play an important role.

Now, research shows for the first time that competition was fundamental to “speciation” – the rate at which new species emerge – across five million years of hominin evolution.

The study, published today in Nature Ecology & Evolution, also suggests that the species formation pattern of our own lineage was closer to island-dwelling beetles than other mammals.  

“We have been ignoring the way competition between species has shaped our own evolutionary tree,” said lead author Dr Laura van Holstein, a University of Cambridge biological anthropologist at Clare College. “The effect of climate on hominin species is only part of the story.” 

In other vertebrates, species form to fill ecological “niches” says van Holstein. Take Darwin’s finches: some evolved large beaks for nut-cracking, while others evolved small beaks for feeding on certain insects. When each resource niche gets filled, competition kicks in, so no new finches emerge and extinctions take over.

Van Holstein used Bayesian modelling and phylogenetic analyses to show that, like other vertebrates, most hominin species formed when competition for resources or space were low.

“The pattern we see across many early hominins is similar to all other mammals. Speciation rates increase and then flatline, at which point extinction rates start to increase. This suggests that interspecies competition was a major evolutionary factor.”

However, when van Holstein analysed our own group, Homo, the findings were “bizarre”.

For the Homo lineage that led to modern humans, evolutionary patterns suggest that competition between species actually resulted in the appearance of even more new species – a complete reversal of the trend seen in almost all other vertebrates.

“The more species of Homo there were, the higher the rate of speciation. So when those niches got filled, something drove even more species to emerge. This is almost unparalleled in evolutionary science.”

The closest comparison she could find was in beetle species that live on islands, where contained ecosystems can produce unusual evolutionary trends.

“The patterns of evolution we see across species of Homo that led directly to modern humans is closer to those of island-dwelling beetles than other primates, or even any other mammal.”

Recent decades have seen the discovery of several new hominin species, from Australopithecus sediba to Homo floresiensis. Van Holstein created a new database of “occurrences” in the hominin fossil record: each time an example of a species was found and dated, around 385 in total.

Fossils can be an unreliable measure of species’ lifetimes. “The earliest fossil we find will not be the earliest members of a species,” said van Holstein.

“How well an organism fossilises depends on geology, and on climatic conditions: whether it is hot or dry or damp. With research efforts concentrated in certain parts of the world, and we might well have missed younger or older fossils of a species as a result.”

Van Holstein used data modelling to address this problem, and factor in likely numbers of each species at the beginning and end of their existence, as well as environmental factors on fossilisation, to generate new start and end dates for most known hominin species (17 in total).

She found that some species thought to have evolved through “anagenesis” – when one slowly turns into another, but lineage doesn’t split – may have actually “budded”: when a new species branches off from an existing one.*

This meant that several more hominin species than previously assumed were co-existing, and so possibly competing.

While early species of hominins, such as Paranthropus, probably evolved physiologically to expand their niche – adapting teeth to exploit new types of food, for example – the driver of the very different pattern in our own genus Homo may well have been technology.

“Adoption of stone tools or fire, or intensive hunting techniques, are extremely flexible behaviours. A species that can harness them can quickly carve out new niches, and doesn’t have to survive vast tracts of time while evolving new body plans,” said van Holstein

She argues that an ability to use technology to generalise, and rapidly go beyond ecological niches that force other species to compete for habitat and resources, may be behind the exponential increase in the number of Homo species detected by the latest study.

But it also led to Homo sapiens – the ultimate generalisers. And competition with an extremely flexible generalist in almost every ecological niche may be what contributed to the extinction of all other Homo species.

Added van Holstein: “These results show that, although it has been conventionally ignored, competition played an important role in human evolution overall. Perhaps most interestingly, in our own genus it played a role unlike that across any other vertebrate lineage known so far.”

Competition between species played a major role in the rise and fall of hominins, and produced a “bizarre” evolutionary pattern for the Homo lineage.

This is almost unparalleled in evolutionary scienceLaura van HolsteinThe Duckworth LaboratoryA cast of the skull of Homo Heidelbergensis, one of the hominin species analysed in the latest study.


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Interspecies competition led to even more forms of ancient human – defying evolutionary trends in vertebrates

Cambridge Uni news - Wed, 17/04/2024 - 09:06

Climate has long been held responsible for the emergence and extinction of hominin species. In most vertebrates, however, interspecies competition is known to play an important role.

Now, research shows for the first time that competition was fundamental to “speciation” – the rate at which new species emerge – across five million years of hominin evolution.

The study, published today in Nature Ecology & Evolution, also suggests that the species formation pattern of our own lineage was closer to island-dwelling beetles than other mammals.  

“We have been ignoring the way competition between species has shaped our own evolutionary tree,” said lead author Dr Laura van Holstein, a University of Cambridge biological anthropologist at Clare College. “The effect of climate on hominin species is only part of the story.” 

In other vertebrates, species form to fill ecological “niches” says van Holstein. Take Darwin’s finches: some evolved large beaks for nut-cracking, while others evolved small beaks for feeding on certain insects. When each resource niche gets filled, competition kicks in, so no new finches emerge and extinctions take over.

Van Holstein used Bayesian modelling and phylogenetic analyses to show that, like other vertebrates, most hominin species formed when competition for resources or space were low.

“The pattern we see across many early hominins is similar to all other mammals. Speciation rates increase and then flatline, at which point extinction rates start to increase. This suggests that interspecies competition was a major evolutionary factor.”

However, when van Holstein analysed our own group, Homo, the findings were “bizarre”.

For the Homo lineage that led to modern humans, evolutionary patterns suggest that competition between species actually resulted in the appearance of even more new species – a complete reversal of the trend seen in almost all other vertebrates.

“The more species of Homo there were, the higher the rate of speciation. So when those niches got filled, something drove even more species to emerge. This is almost unparalleled in evolutionary science.”

The closest comparison she could find was in beetle species that live on islands, where contained ecosystems can produce unusual evolutionary trends.

“The patterns of evolution we see across species of Homo that led directly to modern humans is closer to those of island-dwelling beetles than other primates, or even any other mammal.”

Recent decades have seen the discovery of several new hominin species, from Australopithecus sediba to Homo floresiensis. Van Holstein created a new database of “occurrences” in the hominin fossil record: each time an example of a species was found and dated, around 385 in total.

Fossils can be an unreliable measure of species’ lifetimes. “The earliest fossil we find will not be the earliest members of a species,” said van Holstein.

“How well an organism fossilises depends on geology, and on climatic conditions: whether it is hot or dry or damp. With research efforts concentrated in certain parts of the world, and we might well have missed younger or older fossils of a species as a result.”

Van Holstein used data modelling to address this problem, and factor in likely numbers of each species at the beginning and end of their existence, as well as environmental factors on fossilisation, to generate new start and end dates for most known hominin species (17 in total).

She found that some species thought to have evolved through “anagenesis” – when one slowly turns into another, but lineage doesn’t split – may have actually “budded”: when a new species branches off from an existing one.*

This meant that several more hominin species than previously assumed were co-existing, and so possibly competing.

While early species of hominins, such as Paranthropus, probably evolved physiologically to expand their niche – adapting teeth to exploit new types of food, for example – the driver of the very different pattern in our own genus Homo may well have been technology.

“Adoption of stone tools or fire, or intensive hunting techniques, are extremely flexible behaviours. A species that can harness them can quickly carve out new niches, and doesn’t have to survive vast tracts of time while evolving new body plans,” said van Holstein

She argues that an ability to use technology to generalise, and rapidly go beyond ecological niches that force other species to compete for habitat and resources, may be behind the exponential increase in the number of Homo species detected by the latest study.

But it also led to Homo sapiens – the ultimate generalisers. And competition with an extremely flexible generalist in almost every ecological niche may be what contributed to the extinction of all other Homo species.

Added van Holstein: “These results show that, although it has been conventionally ignored, competition played an important role in human evolution overall. Perhaps most interestingly, in our own genus it played a role unlike that across any other vertebrate lineage known so far.”

Competition between species played a major role in the rise and fall of hominins, and produced a “bizarre” evolutionary pattern for the Homo lineage.

This is almost unparalleled in evolutionary scienceLaura van HolsteinThe Duckworth LaboratoryA cast of the skull of Homo Heidelbergensis, one of the hominin species analysed in the latest study.


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Is Democracy Dying?

http://www.cam.ac.uk/news/feed - Mon, 15/04/2024 - 12:22

2024 is the year of elections. A record number of elections will take place, with half the adult population of the world, some two billion people, having the chance to vote. Is this a milestone to be celebrated in our democratic history or are we at a crossroads where the fate of liberal democracy hangs in the balance?

Against a backdrop of polarising populist movements, the erosion of trust in traditional institutions and a decline of democratic norms, we ask: is democracy dying? Is the election of populists an expression of democracy or a breakdown of democracy? How resilient are our democratic institutions in the face of unprecedented challenges? Is the tension between liberal and democracy ultimately too great to resolve?

Join us on 24 April to grapple with these questions in our second Vice-Chancellor’s Dialogues, hosted by Vice-Chancellor Professor Deborah Prentice.

Our speakers
  • David Goodhart, founding editor of Prospect magazine and Head of the Demography, Immigration and Integration unit at the think tank Policy Exchange. He is the author of The Road to Somewhere: The Populist Revolt and the Future of Politics.
  • Nabila Ramdani, award-winning journalist, broadcaster and academic. She is the author of Fixing France: How to Repair a Broken Republic.
  • Helen Thompson, Professor of Political Economy at the University of Cambridge. She is a regular panellist on Talking Politics and a columnist for the New Statesman.

The discussion will be chaired by Roger Mosey, Master of Selwyn College and former Editorial Director of the BBC. The event is public and open to all, but attendees must register on Eventbrite.

Register to attend  

If you're not able to attend, we'll publish a recording of the event in the coming weeks.

The second Vice-Chancellor’s Dialogues event grapples with the question: 'is liberal democracy dying?' The evening will be hosted by Vice-Chancellor Professor Deborah Prentice and chaired by the Master of Selwyn College.


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

No

Is Democracy Dying?

Cambridge Uni news - Mon, 15/04/2024 - 12:22

2024 is the year of elections. A record number of elections will take place, with half the adult population of the world, some two billion people, having the chance to vote. Is this a milestone to be celebrated in our democratic history or are we at a crossroads where the fate of liberal democracy hangs in the balance?

Against a backdrop of polarising populist movements, the erosion of trust in traditional institutions and a decline of democratic norms, we ask: is democracy dying? Is the election of populists an expression of democracy or a breakdown of democracy? How resilient are our democratic institutions in the face of unprecedented challenges? Is the tension between liberal and democracy ultimately too great to resolve?

Join us on 24 April to grapple with these questions in our second Vice-Chancellor’s Dialogues, hosted by Vice-Chancellor Professor Deborah Prentice.

Our speakers
  • David Goodhart, founding editor of Prospect magazine and Head of the Demography, Immigration and Integration unit at the think tank Policy Exchange. He is the author of The Road to Somewhere: The Populist Revolt and the Future of Politics.
  • Nabila Ramdani, award-winning journalist, broadcaster and academic. She is the author of Fixing France: How to Repair a Broken Republic.
  • Helen Thompson, Professor of Political Economy at the University of Cambridge. She is a regular panellist on Talking Politics and a columnist for the New Statesman.

The discussion will be chaired by Roger Mosey, Master of Selwyn College and former Editorial Director of the BBC. The event is public and open to all, but attendees must register on Eventbrite.

Register to attend  

If you're not able to attend, we'll publish a recording of the event in the coming weeks.

The second Vice-Chancellor’s Dialogues event grapples with the question: 'is liberal democracy dying?' The evening will be hosted by Vice-Chancellor Professor Deborah Prentice and chaired by the Master of Selwyn College.


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

No

Study unpicks why childhood maltreatment continues to impact on mental and physical health into adulthood

http://www.cam.ac.uk/news/feed - Thu, 11/04/2024 - 15:31

Individuals who experienced maltreatment in childhood – such as emotional, physical and sexual abuse, or emotional and physical neglect – are more likely to develop mental illness throughout their entire life, but it is not yet well understood why this risk persists many decades after maltreatment first took place.

In a study published in Proceedings of the National Academy of Sciences, scientists from the University of Cambridge and Leiden University found that adult brains continue to be affected by childhood maltreatment in adulthood because these experiences make individuals more likely to experience obesity, inflammation and traumatic events, all of which are risk factors for poor health and wellbeing, which in turn also affect brain structure and therefore brain health.

The researchers examined MRI brain scans from approximately 21,000 adult participants aged 40 to 70 years in UK Biobank, as well as information on body mass index (an indicator of metabolic health), CRP (a blood marker of inflammation) and experiences of childhood maltreatment and adult trauma.

Sofia Orellana, a PhD student at the Department of Psychiatry and Darwin College, University of Cambridge, said: “We’ve known for some time that people who experience abuse or neglect as a child can continue to experience mental health problems long into adulthood and that their experiences can also cause long term problems for the brain, the immune system and the metabolic system, which ultimately controls the health of your heart or your propensity to diabetes for instance. What hasn’t been clear is how all these effects interact or reinforce each other.”

Using a type of statistical modelling that allowed them to determine how these interactions work, the researchers confirmed that experiencing childhood maltreatment made individuals more likely to have an increased body mass index (or obesity) and experience greater rates of trauma in adulthood. Individuals with a history of maltreatment tended to show signs of dysfunction in their immune systems, and the researchers showed that this dysfunction is the product of obesity and repeated exposure to traumatic events.

Next, the researchers expanded their models to include MRI measures of the adult’s brains and were able to show that widespread increases and decreases in brain thickness and volume associated with greater body mass index, inflammation and trauma were attributable to childhood maltreatment having made these factors more likely in the first place. These changes in brain structure likely mean that some form of physical damage is occurring to brain cells, affecting how they work and function.

Although there is more to do to understand how these effects operate at a cellular level in the brain, the researchers believe that their findings advance our understanding of how adverse events in childhood can contribute to life-long increased risk of brain and mind health disorders.

Professor Ed Bullmore from the Department of Psychiatry and an Honorary Fellow at Downing College, Cambridge, said: “Now that we have a better understanding of why childhood maltreatment has long term effects, we can potentially look for biomarkers – biological red flags – that indicate whether an individual is at increased risk of continuing problems. This could help us target early on those who most need help, and hopefully aid them in breaking this chain of ill health.”

The research was supported by MQ: Transforming Mental Health, the Royal Society, Medical Research Council, National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre, the NIHR Applied Research Collaboration East of England, Girton College and Darwin College.

Reference
Orellana, SC et al. Childhood maltreatment influences adult brain structure through its effects on immune, metabolic and psychosocial factors. PNAS; 9 Apr 2024 ; DOI: 10.1073/pnas.230470412

Childhood maltreatment can continue to have an impact long into adulthood because of how it effects an individual’s risk of poor physical health and traumatic experiences many years later, a new study has found.

We’ve known for some time that people who experience abuse or neglect as a child can continue to experience mental health problems long into adulthoodSofia Orellanamali desha (Unsplash)Black and white image of boy curled up on the floor


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Public Domain

Study unpicks why childhood maltreatment continues to impact on mental and physical health into adulthood

Cambridge Uni news - Thu, 11/04/2024 - 15:31

Individuals who experienced maltreatment in childhood – such as emotional, physical and sexual abuse, or emotional and physical neglect – are more likely to develop mental illness throughout their entire life, but it is not yet well understood why this risk persists many decades after maltreatment first took place.

In a study published in Proceedings of the National Academy of Sciences, scientists from the University of Cambridge and Leiden University found that adult brains continue to be affected by childhood maltreatment in adulthood because these experiences make individuals more likely to experience obesity, inflammation and traumatic events, all of which are risk factors for poor health and wellbeing, which in turn also affect brain structure and therefore brain health.

The researchers examined MRI brain scans from approximately 21,000 adult participants aged 40 to 70 years in UK Biobank, as well as information on body mass index (an indicator of metabolic health), CRP (a blood marker of inflammation) and experiences of childhood maltreatment and adult trauma.

Sofia Orellana, a PhD student at the Department of Psychiatry and Darwin College, University of Cambridge, said: “We’ve known for some time that people who experience abuse or neglect as a child can continue to experience mental health problems long into adulthood and that their experiences can also cause long term problems for the brain, the immune system and the metabolic system, which ultimately controls the health of your heart or your propensity to diabetes for instance. What hasn’t been clear is how all these effects interact or reinforce each other.”

Using a type of statistical modelling that allowed them to determine how these interactions work, the researchers confirmed that experiencing childhood maltreatment made individuals more likely to have an increased body mass index (or obesity) and experience greater rates of trauma in adulthood. Individuals with a history of maltreatment tended to show signs of dysfunction in their immune systems, and the researchers showed that this dysfunction is the product of obesity and repeated exposure to traumatic events.

Next, the researchers expanded their models to include MRI measures of the adult’s brains and were able to show that widespread increases and decreases in brain thickness and volume associated with greater body mass index, inflammation and trauma were attributable to childhood maltreatment having made these factors more likely in the first place. These changes in brain structure likely mean that some form of physical damage is occurring to brain cells, affecting how they work and function.

Although there is more to do to understand how these effects operate at a cellular level in the brain, the researchers believe that their findings advance our understanding of how adverse events in childhood can contribute to life-long increased risk of brain and mind health disorders.

Professor Ed Bullmore from the Department of Psychiatry and an Honorary Fellow at Downing College, Cambridge, said: “Now that we have a better understanding of why childhood maltreatment has long term effects, we can potentially look for biomarkers – biological red flags – that indicate whether an individual is at increased risk of continuing problems. This could help us target early on those who most need help, and hopefully aid them in breaking this chain of ill health.”

The research was supported by MQ: Transforming Mental Health, the Royal Society, Medical Research Council, National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre, the NIHR Applied Research Collaboration East of England, Girton College and Darwin College.

Reference
Orellana, SC et al. Childhood maltreatment influences adult brain structure through its effects on immune, metabolic and psychosocial factors. PNAS; 9 Apr 2024 ; DOI: 10.1073/pnas.230470412

Childhood maltreatment can continue to have an impact long into adulthood because of how it effects an individual’s risk of poor physical health and traumatic experiences many years later, a new study has found.

We’ve known for some time that people who experience abuse or neglect as a child can continue to experience mental health problems long into adulthoodSofia Orellanamali desha (Unsplash)Black and white image of boy curled up on the floor


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Public Domain

Four Cambridge researchers awarded prestigious European Research Council Advanced Grants

http://www.cam.ac.uk/news/feed - Thu, 11/04/2024 - 11:01

The European Research Council (ERC) has announced today the award of 255 Advanced Grants to outstanding research leaders across Europe, as part of the EU’s Horizon Europe programme. Four University of Cambridge researchers are amongst those to receive this prestigious and competitive funding.

The University of Cambridge’s grant awardees are:

Dr Albert Guillén i Fàbregas in the Department of Engineering for his project Scaling and Concentration Laws in Information Theory.

Fàbregas, who has previously received ERC Starting, Consolidator and Proof of Concept Grants, said: “I am truly delighted with the news that the ERC will continue to fund my research in information theory, which studies the mathematical aspects of data transmission and data compression.

“This project will broaden the theory to study arbitrary scaling laws of the number of messages to transmit or compress."

Professor Beverley Glover in the Department of Plant Sciences and Director of Cambridge University Botanic Garden, for her project Convergent evolution of floral patterning through alternative optimisation of mechanical parameter space.

Glover said: “This funding will enable us to explore how iridescent colour evolved repeatedly in different flowers. We think it will shed new light on evolution itself, as we think about the development of iridescence structure from a mechanical perspective, focusing on the forces acting as a petal grows and the mechanical properties of the petal tissue.

“It's only possible for me to do this work because of the amazing living collection at Cambridge University Botanic Garden, and I'm thrilled that the ERC is keen to support it."

Professor Ian Henderson in the Department of Plant Sciences for his project Evolution of the Arabidopsis Pancentromere.

Henderson said: “This project seeks to investigate enigmatic regions of the genome called the centromeres, using the model plant Arabidopsis. These regions play a deeply conserved role in cell division yet paradoxically are fast evolving.

“I am highly honoured and excited to be awarded an ERC Advanced grant. The advent of long-read sequencing technology makes addressing these questions timely. The ERC’s long-term support will allow us to capitalise on these advances, build new collaborations, and train postdoctoral researchers.”

Professor Paul Lane in the Department of Archaeology, for his project Landscape Historical Ecology and Archaeology of Ancient Pastoral Societies in Kenya.

Lane said: “Pastoralism has been an extraordinarily resilient livelihood strategy across Africa. This project provides an excellent opportunity to reconstruct how East Africa’s pastoralists responded to significant climate change in the past, and to draw lessons from these adaptations for responding to contemporary climate crises in a region that is witnessing heightened water scarcity and loss of access to critically important grazing lands.”

“This project will allow us to utilise the department’s world-leading archaeological science laboratories and expertise to answer crucial questions about past patterns of mobility, dietary diversity, climatic regimes and food security among East African pastoralists over the last fifteen hundred years. This has never been attempted before for this time period.”

Professor Anne Ferguson-Smith, Pro-Vice Chancellor for Research at the University of Cambridge said: “Many congratulations to Albert, Beverley, Ian and Paul on receiving these prestigious and highly competitive awards. It is fantastic that their ambitious, cutting-edge research will be supported by the European Research Council, marking them as outstanding European research leaders.

“Now that the UK is an associated country to Horizon Europe I encourage other Cambridge researchers to also consider applying to the ERC and other Horizon Europe programmes.”

President of the European Research Council Professor Maria Leptin said: “Congratulations to the 255 researchers who will receive grants to follow their scientific instinct in this new funding round. I am particularly happy to see more mid-career scientists amongst the Advanced Grant winners this time. I hope that it will encourage more researchers at this career stage to apply for these grants.”

The ERC is the premier European funding organisation for excellent frontier research. The 255 ERC Advanced Grants, totalling €652 million, support cutting-edge research in a wide range of fields from medicine and physics to social sciences and humanities.

The European Commission and the UK Government have reached an agreement on the association of the UK to Horizon Europe, which applies for calls for proposals implementing the 2024 budget and onwards.

The ERC Advanced Grants target established, leading researchers with a proven track-record of significant achievements. In recent years, there has been a steady rise in mid-career researchers (12-17 years post-PhD), who have been successful in the Advanced Grants competitions, with 18% securing grants in this latest round.

The funding provides leading senior researchers with the opportunity to pursue ambitious, curiosity-driven projects that could lead to major scientific breakthroughs.

Many congratulations to Albert, Beverley, Ian and Paul... It is fantastic that their ambitious, cutting-edge research will be supported by the European Research Council, marking them as outstanding European research leaders.Anne Ferguson-Smith


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Four Cambridge researchers awarded prestigious European Research Council Advanced Grants

Cambridge Uni news - Thu, 11/04/2024 - 11:01

The European Research Council (ERC) has announced today the award of 255 Advanced Grants to outstanding research leaders across Europe, as part of the EU’s Horizon Europe programme. Four University of Cambridge researchers are amongst those to receive this prestigious and competitive funding.

The University of Cambridge’s grant awardees are:

Dr Albert Guillén i Fàbregas in the Department of Engineering for his project Scaling and Concentration Laws in Information Theory.

Fàbregas, who has previously received ERC Starting, Consolidator and Proof of Concept Grants, said: “I am truly delighted with the news that the ERC will continue to fund my research in information theory, which studies the mathematical aspects of data transmission and data compression.

“This project will broaden the theory to study arbitrary scaling laws of the number of messages to transmit or compress."

Professor Beverley Glover in the Department of Plant Sciences and Director of Cambridge University Botanic Garden, for her project Convergent evolution of floral patterning through alternative optimisation of mechanical parameter space.

Glover said: “This funding will enable us to explore how iridescent colour evolved repeatedly in different flowers. We think it will shed new light on evolution itself, as we think about the development of iridescence structure from a mechanical perspective, focusing on the forces acting as a petal grows and the mechanical properties of the petal tissue.

“It's only possible for me to do this work because of the amazing living collection at Cambridge University Botanic Garden, and I'm thrilled that the ERC is keen to support it."

Professor Ian Henderson in the Department of Plant Sciences for his project Evolution of the Arabidopsis Pancentromere.

Henderson said: “This project seeks to investigate enigmatic regions of the genome called the centromeres, using the model plant Arabidopsis. These regions play a deeply conserved role in cell division yet paradoxically are fast evolving.

“I am highly honoured and excited to be awarded an ERC Advanced grant. The advent of long-read sequencing technology makes addressing these questions timely. The ERC’s long-term support will allow us to capitalise on these advances, build new collaborations, and train postdoctoral researchers.”

Professor Paul Lane in the Department of Archaeology, for his project Landscape Historical Ecology and Archaeology of Ancient Pastoral Societies in Kenya.

Lane said: “Pastoralism has been an extraordinarily resilient livelihood strategy across Africa. This project provides an excellent opportunity to reconstruct how East Africa’s pastoralists responded to significant climate change in the past, and to draw lessons from these adaptations for responding to contemporary climate crises in a region that is witnessing heightened water scarcity and loss of access to critically important grazing lands.”

“This project will allow us to utilise the department’s world-leading archaeological science laboratories and expertise to answer crucial questions about past patterns of mobility, dietary diversity, climatic regimes and food security among East African pastoralists over the last fifteen hundred years. This has never been attempted before for this time period.”

Professor Anne Ferguson-Smith, Pro-Vice Chancellor for Research at the University of Cambridge said: “Many congratulations to Albert, Beverley, Ian and Paul on receiving these prestigious and highly competitive awards. It is fantastic that their ambitious, cutting-edge research will be supported by the European Research Council, marking them as outstanding European research leaders.

“Now that the UK is an associated country to Horizon Europe I encourage other Cambridge researchers to also consider applying to the ERC and other Horizon Europe programmes.”

President of the European Research Council Professor Maria Leptin said: “Congratulations to the 255 researchers who will receive grants to follow their scientific instinct in this new funding round. I am particularly happy to see more mid-career scientists amongst the Advanced Grant winners this time. I hope that it will encourage more researchers at this career stage to apply for these grants.”

The ERC is the premier European funding organisation for excellent frontier research. The 255 ERC Advanced Grants, totalling €652 million, support cutting-edge research in a wide range of fields from medicine and physics to social sciences and humanities.

The European Commission and the UK Government have reached an agreement on the association of the UK to Horizon Europe, which applies for calls for proposals implementing the 2024 budget and onwards.

The ERC Advanced Grants target established, leading researchers with a proven track-record of significant achievements. In recent years, there has been a steady rise in mid-career researchers (12-17 years post-PhD), who have been successful in the Advanced Grants competitions, with 18% securing grants in this latest round.

The funding provides leading senior researchers with the opportunity to pursue ambitious, curiosity-driven projects that could lead to major scientific breakthroughs.

Many congratulations to Albert, Beverley, Ian and Paul... It is fantastic that their ambitious, cutting-edge research will be supported by the European Research Council, marking them as outstanding European research leaders.Anne Ferguson-Smith


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Pork labelling schemes ‘not helpful’ in making informed buying choices, say researchers

http://www.cam.ac.uk/news/feed - Thu, 11/04/2024 - 10:27

Researchers have evaluated different types of pig farming – including woodland, organic, free range, RSPCA assured, and Red Tractor certified, to assess each systems’ impact across four areas: land use (representing biodiversity loss), greenhouse gas emissions, antibiotics use and animal welfare. Their study concludes that none of the farm types performed consistently well across all four areas – a finding that has important implications for increasingly climate conscious consumers, as well as farmers themselves.

However, there were individual farms that did perform well in all domains, including an indoor Red Tractor farm, an outdoor bred, indoor finished RSPCA assured farm and fully outdoor woodland farm. “Outliers like these show that trade-offs are not inevitable,” said lead author Dr Harriet Bartlett, Research Associate at the University of Oxford's Smith School of Enterprise and the Environment, who was formerly at the University of Cambridge.  

“Somewhat unexpectedly we found that a handful of farms perform far better than average across all four of our environmental and welfare measures,” added senior author Andrew Balmford, Professor of Conservation Science at the University of Cambridge. However, none of the current label or assurance schemes predicted which farms these would be.

“The way we classify farm types and label pork isn’t helpful for making informed decisions when it comes to buying more sustainable meat. Even more importantly, we aren’t rewarding and incentivising the best-performing farmers. Instead of focusing on farm types or practices, we need to focus on meaningful outcomes for people, the planet and the pigs – and assess, and reward farms based on these,” said Bartlett.

The findings also show that common assumptions around food labelling can be misplaced. For instance, Organic farming systems, which consumers might see as climate and environmentally friendly, have on average three times the CO2 output per kg of meat of more intensive Red Tractor or RSPCA assured systems and four times the land use. However, these same systems use on average almost 90% fewer antibiotic medicines, and result in improved animal welfare compared with production from Red tractor or RSPCA assured systems.

The way we classify livestock farms must be improved, Bartlett says, because livestock production is growing rapidly, especially pork production, which has quadrupled in the past 50 years and already accounts for 9% of greenhouse gas emissions from livestock. Pig farming also uses more antibiotics than any other livestock sector, and 8.5% of all arable land.

“Our findings show that mitigating the environmental impacts of livestock farming isn’t a case of saying which farm type is the best,” said Bartlett. “There is substantial scope for improvement within types, and our current means of classification is not identifying the best farms for the planet and animals overall. Instead, we need to identify farms that successfully limit their impacts across all areas of societal concern, and understand, promote and incentivise their practises.”

The study reached its conclusions using data from 74 UK and 17 Brazilian breed-to-finish systems, each made up of 1-3 farms and representing the annual production of over 1.2 million pigs. It is published today in the journal Nature Food.

“To the best of our knowledge, our dataset covers by far the largest and most diverse sample of pig production systems examined in any single study,” said Bartlett.

James Wood, Professor of Equine and Farm Animal Science at the University of Cambridge, commented: “This important study identifies a key need to clarify what different farm labels should indicate to consumers; there is a pressing need to extend this work into other farming sectors. It also clearly demonstrates the critical importance that individual farmers play in promoting best practice across all farming systems.”

Trade-offs in the externalities of pig production are not inevitable was authored by academics at the University of Oxford, University of Cambridge and the University of São Paulo.

The research was funded by the Biotechnology and Biological Sciences Research Council (BBSRC).

Reference: Bartlett, H.,‘Trade-offs in the externalities of pig production are not inevitable.’ Nature Food, April 2024. DOI: 10.1038/s43016-024-00921-2

Adapted from a press release by the University of Oxford.

Farmers don’t have to choose between lowering environmental impact and improving welfare for their pigs, a new study has found: it is possible to do both. But this is not reflected in the current food labelling schemes relied on by consumers.

The way we classify farm types and label pork isn’t helpful for making informed decisions when it comes to buying more sustainable meat.Harriet BartlettCharity Burggraaf/ GettyTwo pigs on a farm


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Attribution-Noncommerical

Pork labelling schemes ‘not helpful’ in making informed buying choices, say researchers

Cambridge Uni news - Thu, 11/04/2024 - 10:27

Researchers have evaluated different types of pig farming – including woodland, organic, free range, RSPCA assured, and Red Tractor certified, to assess each systems’ impact across four areas: land use (representing biodiversity loss), greenhouse gas emissions, antibiotics use and animal welfare. Their study concludes that none of the farm types performed consistently well across all four areas – a finding that has important implications for increasingly climate conscious consumers, as well as farmers themselves.

However, there were individual farms that did perform well in all domains, including an indoor Red Tractor farm, an outdoor bred, indoor finished RSPCA assured farm and fully outdoor woodland farm. “Outliers like these show that trade-offs are not inevitable,” said lead author Dr Harriet Bartlett, Research Associate at the University of Oxford's Smith School of Enterprise and the Environment, who was formerly at the University of Cambridge.  

“Somewhat unexpectedly we found that a handful of farms perform far better than average across all four of our environmental and welfare measures,” added senior author Andrew Balmford, Professor of Conservation Science at the University of Cambridge. However, none of the current label or assurance schemes predicted which farms these would be.

“The way we classify farm types and label pork isn’t helpful for making informed decisions when it comes to buying more sustainable meat. Even more importantly, we aren’t rewarding and incentivising the best-performing farmers. Instead of focusing on farm types or practices, we need to focus on meaningful outcomes for people, the planet and the pigs – and assess, and reward farms based on these,” said Bartlett.

The findings also show that common assumptions around food labelling can be misplaced. For instance, Organic farming systems, which consumers might see as climate and environmentally friendly, have on average three times the CO2 output per kg of meat of more intensive Red Tractor or RSPCA assured systems and four times the land use. However, these same systems use on average almost 90% fewer antibiotic medicines, and result in improved animal welfare compared with production from Red tractor or RSPCA assured systems.

The way we classify livestock farms must be improved, Bartlett says, because livestock production is growing rapidly, especially pork production, which has quadrupled in the past 50 years and already accounts for 9% of greenhouse gas emissions from livestock. Pig farming also uses more antibiotics than any other livestock sector, and 8.5% of all arable land.

“Our findings show that mitigating the environmental impacts of livestock farming isn’t a case of saying which farm type is the best,” said Bartlett. “There is substantial scope for improvement within types, and our current means of classification is not identifying the best farms for the planet and animals overall. Instead, we need to identify farms that successfully limit their impacts across all areas of societal concern, and understand, promote and incentivise their practises.”

The study reached its conclusions using data from 74 UK and 17 Brazilian breed-to-finish systems, each made up of 1-3 farms and representing the annual production of over 1.2 million pigs. It is published today in the journal Nature Food.

“To the best of our knowledge, our dataset covers by far the largest and most diverse sample of pig production systems examined in any single study,” said Bartlett.

James Wood, Professor of Equine and Farm Animal Science at the University of Cambridge, commented: “This important study identifies a key need to clarify what different farm labels should indicate to consumers; there is a pressing need to extend this work into other farming sectors. It also clearly demonstrates the critical importance that individual farmers play in promoting best practice across all farming systems.”

Trade-offs in the externalities of pig production are not inevitable was authored by academics at the University of Oxford, University of Cambridge and the University of São Paulo.

The research was funded by the Biotechnology and Biological Sciences Research Council (BBSRC).

Reference: Bartlett, H.,‘Trade-offs in the externalities of pig production are not inevitable.’ Nature Food, April 2024. DOI: 10.1038/s43016-024-00921-2

Adapted from a press release by the University of Oxford.

Farmers don’t have to choose between lowering environmental impact and improving welfare for their pigs, a new study has found: it is possible to do both. But this is not reflected in the current food labelling schemes relied on by consumers.

The way we classify farm types and label pork isn’t helpful for making informed decisions when it comes to buying more sustainable meat.Harriet BartlettCharity Burggraaf/ GettyTwo pigs on a farm


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Attribution-Noncommerical

Collections-based research and innovation receives vital investment from Research England

http://www.cam.ac.uk/news/feed - Tue, 09/04/2024 - 11:58

The University cares for the country’s highest concentration of internationally important collections outside London, with more than five million works of art, artefacts and specimens. Together, these collections play a fundamental role in delivering the University mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence and encompasses collaboration with and support of world-renowned researchers, game-changing research-led exhibitions and wide-ranging inclusion and learning programmes, promoting wellbeing, creativity and connectivity.

“I’m delighted that Research England has made such a strong statement of support for collections-based research at Cambridge, particularly in a challenging funding landscape,” said Kamal Munir, Pro-Vice-Chancellor for University Community and Engagement.

“The University continues to invest in enhanced research infrastructure and services to generate and enable research that spans the arts and the sciences, including via a Strategic Research Initiative, Collections-Connections-Communities that provides a convening space for research that benefits our communities. HEMG funding is critical in ensuring our collections support researchers and students across the UK and worldwide, through infrastructure, services, staffing and equitable collaboration.” 

This year, the University Herbarium joins the portfolio for the first time and the Sedgwick Museum of Earth Sciences rejoins the portfolio. 

Sam Brockington, academic lead for the Herbarium, which was recently awarded Designated status, said: “It’s fantastic to see the University Herbarium receive investment in this way. The Herbarium is the fourth-largest of its kind in the country, and a rich resource that supports a huge range of scientific and humanities research. Research supported by the Herbarium ranges from the discovery of species new to science, to the genomics of crop improvement, and investigations into the history and development of scientific ideas and natural history. This investment will enable us to substantially develop our support for the wider academic community.”

Dr Liz Hide, Director of the Sedgwick Museum of Earth Sciences, which has been awarded £210,000 a year, said: “I’m delighted that Research England has recognised the strength of the Sedgwick’s collections and their importance to the UK and international research landscape. Over the next five years, this new investment will be transformative for the Sedgwick Museum, ensuring researchers can fully utilise our new Collections Research Centre, and enabling our outstanding collections to inspire many new avenues of research across both the sciences and the humanities.”

Dr Juliette Fritsch, the University’s first Director for Collections’ Strategy, said: "I’m thrilled to work across the incredible resources contained within the University’s museums, libraries, and botanic garden collections to create strategies together, building on major initiatives, such as the cross-collections Power and Memory programme. These integrated approaches enhance our collective impact and are only possible through the input of our funders, including Research England and Arts Council England.”

The full list of University of Cambridge museums and collections awarded HEMG funding are:

1. Cambridge University Botanic Garden 
2. Fitzwilliam Museum 
3. Kettle’s Yard 
4. Museum of Archaeology & Anthropology (MAA) 
5. University Museum of Zoology 
6. Polar Museum 
7. Whipple Museum of the History of Science 
8. Sedgwick Museum of Earth Sciences 
9. Cambridge University Herbarium 

Research England has supported nine of the University’s museums and collections with £3m a year of Higher Education Museums, Galleries and Collections (HEMG) funding, over the coming five years.

HEMG funding is critical in ensuring our collections support researchers and students across the UK and worldwideKamal Munir©markbox.co.ukRhododendron brookianum type specimen from the University of Cambridge Herbarium


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Attribution

Collections-based research and innovation receives vital investment from Research England

Cambridge Uni news - Tue, 09/04/2024 - 11:58

The University cares for the country’s highest concentration of internationally important collections outside London, with more than five million works of art, artefacts and specimens. Together, these collections play a fundamental role in delivering the University mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence and encompasses collaboration with and support of world-renowned researchers, game-changing research-led exhibitions and wide-ranging inclusion and learning programmes, promoting wellbeing, creativity and connectivity.

“I’m delighted that Research England has made such a strong statement of support for collections-based research at Cambridge, particularly in a challenging funding landscape,” said Kamal Munir, Pro-Vice-Chancellor for University Community and Engagement.

“The University continues to invest in enhanced research infrastructure and services to generate and enable research that spans the arts and the sciences, including via a Strategic Research Initiative, Collections-Connections-Communities that provides a convening space for research that benefits our communities. HEMG funding is critical in ensuring our collections support researchers and students across the UK and worldwide, through infrastructure, services, staffing and equitable collaboration.” 

This year, the University Herbarium joins the portfolio for the first time and the Sedgwick Museum of Earth Sciences rejoins the portfolio. 

Sam Brockington, academic lead for the Herbarium, which was recently awarded Designated status, said: “It’s fantastic to see the University Herbarium receive investment in this way. The Herbarium is the fourth-largest of its kind in the country, and a rich resource that supports a huge range of scientific and humanities research. Research supported by the Herbarium ranges from the discovery of species new to science, to the genomics of crop improvement, and investigations into the history and development of scientific ideas and natural history. This investment will enable us to substantially develop our support for the wider academic community.”

Dr Liz Hide, Director of the Sedgwick Museum of Earth Sciences, which has been awarded £210,000 a year, said: “I’m delighted that Research England has recognised the strength of the Sedgwick’s collections and their importance to the UK and international research landscape. Over the next five years, this new investment will be transformative for the Sedgwick Museum, ensuring researchers can fully utilise our new Collections Research Centre, and enabling our outstanding collections to inspire many new avenues of research across both the sciences and the humanities.”

Dr Juliette Fritsch, the University’s first Director for Collections’ Strategy, said: "I’m thrilled to work across the incredible resources contained within the University’s museums, libraries, and botanic garden collections to create strategies together, building on major initiatives, such as the cross-collections Power and Memory programme. These integrated approaches enhance our collective impact and are only possible through the input of our funders, including Research England and Arts Council England.”

The full list of University of Cambridge museums and collections awarded HEMG funding are:

1. Cambridge University Botanic Garden 
2. Fitzwilliam Museum 
3. Kettle’s Yard 
4. Museum of Archaeology & Anthropology (MAA) 
5. University Museum of Zoology 
6. Polar Museum 
7. Whipple Museum of the History of Science 
8. Sedgwick Museum of Earth Sciences 
9. Cambridge University Herbarium 

Research England has supported nine of the University’s museums and collections with £3m a year of Higher Education Museums, Galleries and Collections (HEMG) funding, over the coming five years.

HEMG funding is critical in ensuring our collections support researchers and students across the UK and worldwideKamal Munir©markbox.co.ukRhododendron brookianum type specimen from the University of Cambridge Herbarium


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Attribution

£9.2m boost for next generation of Cambridge cancer experts

http://www.cam.ac.uk/news/feed - Tue, 09/04/2024 - 11:47

The charity is to award the funding over the next five years to train early-career clinician scientists – doctors who also carry out medical research - as part of its Clinical Academic Training Programme. 

The Clinical Academic Training Programme will invest £58.7m at nine research centres including the Cancer Research UK Cambridge Centre in partnership with the University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, which includes Addenbrooke’s Hospital.

Clinician scientists play an essential role in translating cancer research, helping to bridge the gap between scientific research carried out in laboratories and clinical research involving patients.  

Dr Caroline Watson – now a Group Leader in the Early Cancer Institute at the University of Cambridge and Honorary Haematology Consultant at Addenbrooke’s Hospital – has benefited from this funding, having previously been awarded a three-year Cancer Research UK Clinical Research Training Fellowship in 2017. Caroline was first author on a Science paper and Nature Genetics paper, based on her Cancer Research UK-funded research, that identified which mutations in healthy blood are associated with the highest risk of developing blood cancer.

Dr Watson said: “As we age, we all acquire mutations in the cells that make up our tissues.  The vast majority are harmless, but some can increase cancer risk. With blood’s relative ease of sampling and improved DNA sequencing costs, we now have enough data, across many thousands of individuals, to determine which specific mutations enable cells to expand most rapidly and could therefore confer the highest risk of cancer. Knowing whether specific mutations are high-risk or clinically insignificant is key for the future of personalised cancer risk. 

“I’m immensely grateful for the funding I received from Cancer Research UK, which provided me with a key stepping stone in my clinician scientist career.  I feel fortunate to now be able to spend the bulk of my time focused on research, but also continue with some clinical work in parallel.  Having been involved in setting up the UK’s first clinic focused on blood cancer prevention at Addenbrooke’s Hospital, I look forward to translating my research findings to directly benefit patients.”

Michelle Mitchell, Cancer Research UK’s Chief Executive, said: “Clinician scientists have a very important role to play by bringing their knowledge and experience of treating people with cancer to scientific research.

“We need all our doctors and scientists to be able to reach their full potential, no matter their background. That’s why we are continuing to provide flexible training options for early-career clinician scientists.”

The contribution of clinician scientists in the new Cambridge Cancer Research Hospital will be critical for the future of cancer research. The East of England specialist cancer hospital planned for the Cambridge Biomedical Campus is bringing together clinical expertise from leading Addenbrooke’s Hospital with world-leading scientists from the University of Cambridge and Cancer Research UK Cambridge Centre, under one roof.  

This integrated approach will help fast-track cancer innovations and will mean patients across the region can directly benefit from the latest innovations in cancer science.

Becoming a clinician scientist usually involves doctors taking time out of their medical training to undertake a PhD, before returning to train in their chosen specialisation, but many clinicians don’t come back to research after qualifying as consultants. This may be due to existing pressure on the healthcare system and lack of available funding.   

Nearly three quarters (74%) of clinical research staff surveyed by Cancer Research UK in 2023 said that it has become harder to deliver research in a timely manner in the last 18 months, with 78% of respondents describing wider pressures on the health service as a substantial or extreme barrier.  

To tackle this issue, Cancer Research UK’s Clinical Academic Training Programme provides flexible training options alongside mentorship and networking opportunities to better support clinicians who want to get involved and stay in cancer research.  

Data from the Medical Schools Council Clinical Academic Survey reports a decline in the number of clinical academic positions between 2011–2020. Research from the United States also suggests that offering combined qualifications retains more women in clinical research roles.    

Professor Richard Gilbertson, Head of the Department of Oncology at the University of Cambridge and Director of the Cancer Research UK Cambridge Centre, said: “We are delighted to gain further generous support from Cancer Research UK to enable us to provide doctors and medical students with flexible training opportunities, training them to be the clinical cancer research leaders of the future.

“Developing new and effective treatments of cancer requires teams of scientists working in the clinic and laboratory, in all specialities. This funding is crucial to ensure that we train these individuals so that we can make these discoveries to benefit patients with cancer well into the future.”

Adapted from a press release from Cancer Research UK

Cancer Research UK has announced £9.2m for Cambridge to train the next generation of doctors and scientists to bring new and better cancer treatments to patients faster. 

I’m immensely grateful for the funding I received from Cancer Research UK, which provided me with a key stepping stone in my clinician scientist careerCaroline WatsonCambridge UniversityAddenbrookes Cancer Research Centre


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

£9.2m boost for next generation of Cambridge cancer experts

Cambridge Uni news - Tue, 09/04/2024 - 11:47

The charity is to award the funding over the next five years to train early-career clinician scientists – doctors who also carry out medical research - as part of its Clinical Academic Training Programme. 

The Clinical Academic Training Programme will invest £58.7m at nine research centres including the Cancer Research UK Cambridge Centre in partnership with the University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, which includes Addenbrooke’s Hospital.

Clinician scientists play an essential role in translating cancer research, helping to bridge the gap between scientific research carried out in laboratories and clinical research involving patients.  

Dr Caroline Watson – now a Group Leader in the Early Cancer Institute at the University of Cambridge and Honorary Haematology Consultant at Addenbrooke’s Hospital – has benefited from this funding, having previously been awarded a three-year Cancer Research UK Clinical Research Training Fellowship in 2017. Caroline was first author on a Science paper and Nature Genetics paper, based on her Cancer Research UK-funded research, that identified which mutations in healthy blood are associated with the highest risk of developing blood cancer.

Dr Watson said: “As we age, we all acquire mutations in the cells that make up our tissues.  The vast majority are harmless, but some can increase cancer risk. With blood’s relative ease of sampling and improved DNA sequencing costs, we now have enough data, across many thousands of individuals, to determine which specific mutations enable cells to expand most rapidly and could therefore confer the highest risk of cancer. Knowing whether specific mutations are high-risk or clinically insignificant is key for the future of personalised cancer risk. 

“I’m immensely grateful for the funding I received from Cancer Research UK, which provided me with a key stepping stone in my clinician scientist career.  I feel fortunate to now be able to spend the bulk of my time focused on research, but also continue with some clinical work in parallel.  Having been involved in setting up the UK’s first clinic focused on blood cancer prevention at Addenbrooke’s Hospital, I look forward to translating my research findings to directly benefit patients.”

Michelle Mitchell, Cancer Research UK’s Chief Executive, said: “Clinician scientists have a very important role to play by bringing their knowledge and experience of treating people with cancer to scientific research.

“We need all our doctors and scientists to be able to reach their full potential, no matter their background. That’s why we are continuing to provide flexible training options for early-career clinician scientists.”

The contribution of clinician scientists in the new Cambridge Cancer Research Hospital will be critical for the future of cancer research. The East of England specialist cancer hospital planned for the Cambridge Biomedical Campus is bringing together clinical expertise from leading Addenbrooke’s Hospital with world-leading scientists from the University of Cambridge and Cancer Research UK Cambridge Centre, under one roof.  

This integrated approach will help fast-track cancer innovations and will mean patients across the region can directly benefit from the latest innovations in cancer science.

Becoming a clinician scientist usually involves doctors taking time out of their medical training to undertake a PhD, before returning to train in their chosen specialisation, but many clinicians don’t come back to research after qualifying as consultants. This may be due to existing pressure on the healthcare system and lack of available funding.   

Nearly three quarters (74%) of clinical research staff surveyed by Cancer Research UK in 2023 said that it has become harder to deliver research in a timely manner in the last 18 months, with 78% of respondents describing wider pressures on the health service as a substantial or extreme barrier.  

To tackle this issue, Cancer Research UK’s Clinical Academic Training Programme provides flexible training options alongside mentorship and networking opportunities to better support clinicians who want to get involved and stay in cancer research.  

Data from the Medical Schools Council Clinical Academic Survey reports a decline in the number of clinical academic positions between 2011–2020. Research from the United States also suggests that offering combined qualifications retains more women in clinical research roles.    

Professor Richard Gilbertson, Head of the Department of Oncology at the University of Cambridge and Director of the Cancer Research UK Cambridge Centre, said: “We are delighted to gain further generous support from Cancer Research UK to enable us to provide doctors and medical students with flexible training opportunities, training them to be the clinical cancer research leaders of the future.

“Developing new and effective treatments of cancer requires teams of scientists working in the clinic and laboratory, in all specialities. This funding is crucial to ensure that we train these individuals so that we can make these discoveries to benefit patients with cancer well into the future.”

Adapted from a press release from Cancer Research UK

Cancer Research UK has announced £9.2m for Cambridge to train the next generation of doctors and scientists to bring new and better cancer treatments to patients faster. 

I’m immensely grateful for the funding I received from Cancer Research UK, which provided me with a key stepping stone in my clinician scientist careerCaroline WatsonCambridge UniversityAddenbrookes Cancer Research Centre


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Partha Dasgupta wins BBVA Frontiers of Knowledge Award for Economics

http://www.cam.ac.uk/news/feed - Thu, 04/04/2024 - 15:14

The 16th edition of the Banco Bilbao Vizcaya Argentaria (BBVA) Frontiers of Knowledge Award in Economics, Finance and Management honours Professor Dasgupta for his work in defining the field of environmental economics by incorporating and quantifying the social value of nature.

The award also takes into account Professor Dasgupta's leadership of an independent, global review on the Economics of Biodiversity commissioned by the UK Treasury in 2019. The Dasgupta Review is expected to help set the agenda for the UK Government’s 25-year environment plan.

The BBVA awards committee said it commended Professor Dasgupta for laying the foundations of environmental economics through his pioneering work “on the interaction between economic life and the natural environment, including biodiversity.”

“More than any other economist of our time, Partha Dasgupta has stressed the important interplay between economic life and the natural environment," Chair of the BBVA selection committee and Nobel Economics laureate Eric Maskin said, adding that Dasgupta’s work and his proposals for measuring economic well-being “are critical for our time.”

The citation for the award said that Professor Dasgupta provided conceptual foundations for the definition and measurement of sustainable development with the social value of nature as a determining factor. That in contrast with measures of well-being based on flows such as GDP, Dasgupta proposed measuring sustainable development as the change in the accounting value of total wealth, including natural capital within this indicator.

“These ideas...have provided a framework for green accounting which is now widely adopted for measuring sustainable development,” the citation concludes.

“Most economists who work on natural resources or the environment think about nature as providing certain types of goods, like food, clean water, timber, fibres or pharmaceuticals,” Professor Dasgupta said. “So these are goods. These are objects that you can harvest from nature and transform with our human ingenuity into a final product, like the clothes we are wearing or the painting in the room where you are sitting, and so forth. These are the things we make out of the goods that nature gives us.”

At the core of this conventional line of economic thought, he explains, is that when a good becomes scarce, you can substitute it with another offering the same or similar results. But as he delved deeper into the subject, Dasgupta came to realize that nature supplies something much more important and irreplaceable than goods. It supplies processes (or in more economic terms, services).

“My own understanding of economics,” he said, “has moved away from goods to processes. These are the key things we economists should keep in mind. Of course we care about nature’s goods, like water, food and clothing, because without them we wouldn’t be here. But none of this would exist without the underlying processes of nature.”

Climate regulation is among the services, or processes, that Dasgupta uses to illustrate his point: sunlight comes and gets reflected into space, water evaporates and comes down as rain.

“You have the water cycle and you get your drinking water from it. And what is not consumed doesn’t disappear, it just evaporates or becomes part of the ocean through the river system and so forth. But if you mess around too much with climate, you also mess around with the water cycle, which will end up weakened. Likewise, if you deforest too much or get rid of biodiversity in the Amazon, you’re going to exacerbate the climate system. So my work has been to bring these issues into economics.”

Dasgupta believes economics has become over-reliant on the idea that scarcity can be overcome by substituting goods.

“In industrial production, of course, this idea of substitutability has been a great success. Think of all the materials that are produced in engineering departments or material science departments. But there are limits to this, when you tamper with processes. Just think of the human body. You have the metabolic process, which keeps you in a healthy state, and it would be foolish to think you could substitute one process for another. You wouldn’t say let me have less digestive capacity, but more running capacity. It would be silly, because these two things go together.”

The BBVA Foundation centers its activity on the promotion of world-class scientific research and cultural creation, and the recognition of talent.

The BBVA Foundation Frontiers of Knowledge Awards recognise and reward contributions of singular impact in physics and chemistry, mathematics, biology and biomedicine, technology, environmental sciences (climate change, ecology and conservation biology), economics, social sciences, the humanities and music, privileging those that significantly enlarge the stock of knowledge in a discipline, open up new fields, or build bridges between disciplinary areas.

Professor Sir Partha Dasgupta (Economics, St. John's) wins the BBVA award for Economics, Finance and Management for his groundbreaking work in environmental economics.

More than any other economist of our time, Partha Dasgupta has stressed the important interplay between economic life and the natural environmentNobel Economics laureate Eric Maskin


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Partha Dasgupta wins BBVA Frontiers of Knowledge Award for Economics

Cambridge Uni news - Thu, 04/04/2024 - 15:14

The 16th edition of the Banco Bilbao Vizcaya Argentaria (BBVA) Frontiers of Knowledge Award in Economics, Finance and Management honours Professor Dasgupta for his work in defining the field of environmental economics by incorporating and quantifying the social value of nature.

The award also takes into account Professor Dasgupta's leadership of an independent, global review on the Economics of Biodiversity commissioned by the UK Treasury in 2019. The Dasgupta Review is expected to help set the agenda for the UK Government’s 25-year environment plan.

The BBVA awards committee said it commended Professor Dasgupta for laying the foundations of environmental economics through his pioneering work “on the interaction between economic life and the natural environment, including biodiversity.”

“More than any other economist of our time, Partha Dasgupta has stressed the important interplay between economic life and the natural environment," Chair of the BBVA selection committee and Nobel Economics laureate Eric Maskin said, adding that Dasgupta’s work and his proposals for measuring economic well-being “are critical for our time.”

The citation for the award said that Professor Dasgupta provided conceptual foundations for the definition and measurement of sustainable development with the social value of nature as a determining factor. That in contrast with measures of well-being based on flows such as GDP, Dasgupta proposed measuring sustainable development as the change in the accounting value of total wealth, including natural capital within this indicator.

“These ideas...have provided a framework for green accounting which is now widely adopted for measuring sustainable development,” the citation concludes.

“Most economists who work on natural resources or the environment think about nature as providing certain types of goods, like food, clean water, timber, fibres or pharmaceuticals,” Professor Dasgupta said. “So these are goods. These are objects that you can harvest from nature and transform with our human ingenuity into a final product, like the clothes we are wearing or the painting in the room where you are sitting, and so forth. These are the things we make out of the goods that nature gives us.”

At the core of this conventional line of economic thought, he explains, is that when a good becomes scarce, you can substitute it with another offering the same or similar results. But as he delved deeper into the subject, Dasgupta came to realize that nature supplies something much more important and irreplaceable than goods. It supplies processes (or in more economic terms, services).

“My own understanding of economics,” he said, “has moved away from goods to processes. These are the key things we economists should keep in mind. Of course we care about nature’s goods, like water, food and clothing, because without them we wouldn’t be here. But none of this would exist without the underlying processes of nature.”

Climate regulation is among the services, or processes, that Dasgupta uses to illustrate his point: sunlight comes and gets reflected into space, water evaporates and comes down as rain.

“You have the water cycle and you get your drinking water from it. And what is not consumed doesn’t disappear, it just evaporates or becomes part of the ocean through the river system and so forth. But if you mess around too much with climate, you also mess around with the water cycle, which will end up weakened. Likewise, if you deforest too much or get rid of biodiversity in the Amazon, you’re going to exacerbate the climate system. So my work has been to bring these issues into economics.”

Dasgupta believes economics has become over-reliant on the idea that scarcity can be overcome by substituting goods.

“In industrial production, of course, this idea of substitutability has been a great success. Think of all the materials that are produced in engineering departments or material science departments. But there are limits to this, when you tamper with processes. Just think of the human body. You have the metabolic process, which keeps you in a healthy state, and it would be foolish to think you could substitute one process for another. You wouldn’t say let me have less digestive capacity, but more running capacity. It would be silly, because these two things go together.”

The BBVA Foundation centers its activity on the promotion of world-class scientific research and cultural creation, and the recognition of talent.

The BBVA Foundation Frontiers of Knowledge Awards recognise and reward contributions of singular impact in physics and chemistry, mathematics, biology and biomedicine, technology, environmental sciences (climate change, ecology and conservation biology), economics, social sciences, the humanities and music, privileging those that significantly enlarge the stock of knowledge in a discipline, open up new fields, or build bridges between disciplinary areas.

Professor Sir Partha Dasgupta (Economics, St. John's) wins the BBVA award for Economics, Finance and Management for his groundbreaking work in environmental economics.

More than any other economist of our time, Partha Dasgupta has stressed the important interplay between economic life and the natural environmentNobel Economics laureate Eric Maskin


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Scientists identify rare gene variants which confer up to 6-fold increase in risk of obesity

http://www.cam.ac.uk/news/feed - Thu, 04/04/2024 - 13:36

The discovery of rare variants in the genes BSN and APBA1 are some of the first obesity-related genes identified for which the increased risk of obesity is not observed until adulthood.

The study, published in Nature Genetics, was led by researchers at the Medical Research Council (MRC) Epidemiology Unit and the MRC Metabolic Diseases Unit at the Institute of Metabolic Science, both based at the University of Cambridge.

The researchers used UK Biobank and other data to perform whole exome sequencing of body mass index (BMI) in over 500,000 individuals.

They found that genetic variants in the gene BSN, also known as Bassoon, can raise the risk of obesity as much as six times and was also associated with an increased risk of non-alcoholic fatty liver disease and of type 2 diabetes.

The Bassoon gene variants were found to affect 1 in 6,500 adults, so could affect about 10,000 people in the UK.

The brain’s role in obesity

Obesity is a major public health concern as it is a significant risk factor for other serious diseases, including cardiovascular disease and type 2 diabetes, yet the genetic reasons why some people are more prone to weight gain are incompletely understood.

Previous research has identified several obesity-associated gene variants conferring large effects from childhood, acting through the leptin-melanocortin pathway in the brain, which plays a key role in appetite regulation.

However, while both BSN and APBA1 encode proteins found in the brain, they are not currently known to be involved in the leptin-melanocortin pathway. In addition, unlike the obesity genes previously identified, variants in BSN and APBA1 are not associated with childhood obesity.

This has led the researchers to believe that they may have uncovered a new biological mechanism for obesity, different to those we already know for previously identified obesity gene variants.

Based on published research and laboratory studies they report in this paper, which indicate that BSN and APBA1 play a role in the transmission of signals between brain cells, the researchers suggest that age-related neurodegeneration could be affecting appetite control.

Professor John Perry, study author and an MRC Investigator at the University of Cambridge, said: “These findings represent another example of the power of large-scale human population genetic studies to enhance our understanding of the biological basis of disease. The genetic variants we identify in BSN confer some of the largest effects on obesity, type 2 diabetes and fatty liver disease observed to date and highlight a new biological mechanism regulating appetite control.”

The use of global data

The accessibility of large-scale databases such as UK Biobank has enabled researchers to search for rare gene variants that may be responsible for conditions including obesity.

For this study, the researchers worked closely with AstraZeneca to replicate their findings in existing cohorts using genetic data from individuals from Pakistan and Mexico. This is important as the researchers can now apply their findings beyond individuals of European ancestry.

If the researchers can better understand the neural biology of obesity, it could present more potential drug targets to treat obesity in the future.

Dr Slavé Petrovski, VP of the Centre for Genomics Research at AstraZeneca, said: “Rigorous large-scale studies such as this are accelerating the pace at which we uncover new insights into human disease biology. By collaborating across academia and industry, leveraging global datasets for validation, and embedding a genomic approach to medicine more widely, we will continue to improve our understanding of disease – for the benefit of patients.”

Next steps for research

Professor Giles Yeo, study author based at the MRC Metabolic Diseases Unit, added: “We have identified two genes with variants that have the most profound impact on obesity risk at a population level we’ve ever seen, but perhaps more importantly, that the variation in Bassoon is linked to adult-onset and not childhood obesity. Thus these findings give us a new appreciation of the relationship between genetics, neurodevelopment and obesity.”

Reference
Zhao, T et al. Protein-truncating variants in BSN are associated with severe adult-onset obesity, type 2 diabetes and fatty liver disease. Nat Gen; 4 Apr 2024; DOI: 10.1038/s41588-024-01694-x

Adapted from a press release from the Medical Research Council

Cambridge researchers have identified genetic variants in two genes that have some of the largest impacts on obesity risk discovered to date.

We have identified two genes with variants that have the most profound impact on obesity risk at a population level we’ve ever seenGiles YeoWorld Obesity FederationWoman with obesity washing food


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Attribution